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ON ST, VENANT'S PRINCIPLE IN THE TORSION PROBLEM FOR A ~INAT~ CYLINDER* 

N.K. AiUiMHDOV and YU.A. USTINOV 

The example ofthetorsion problem is used to show that, in a radially 
inhomogeneous cylinder with alternating hard and soft layers, weakly 
damped boundary layer solutions exist. The corresponding elementary 
solutions can penetrate quite deeply and essentially change the picture 
of the directionally deformed state remote from the end-faces. This in 
fact leads to violation of St. Venant's principle and of its classical 
statement. On the basis of an asymptotic analysis of the three-dimen- 
sional problem, a practical torsion theory is proposed, which adequately 
takes account of the singularities that arise. It was shown earlier /I/ 
that weakly damped boundary layer solutions exist for plates with alter- 
nating hard soft layers. 

1. We consider the torsion problem for a circular radially inhomogeneous cylinder. The 
cylinder is given in cylindrical coordinates by 

B = ir E [rO, rXi, e E 10, 2~1, 2 E lo, tl) 

The equation of equilibrium is 

Here, u is the tangential component of the displacement vector, and G=G(p) is the 
modulus of rigidity, which is regarded as a positive piecewise continuous function. 

We assume that the lateral surface is free from stresses, and that boundary conditions 
are given on the end-faces. 

-The general 

Here, u,, is the St. Venant solution, A,,B, are arbitrary constants, y, are positive 
eigenvalues, and v, are the eigenfunctions of the spectral problem 

solution of our problem can be written as 

rJ=u+ + 5 Y*(p)[d,e-@ + &&G-*)] 

% = P (A?+ B,E) 

(i-2) 

$[G(f - +)] ++G($ - -+) -j- Gy'v=o; 

-_P at, 
dP P 

=0 for p=po.pl 

It can be shown that problem 
the orthogonality condition 

where & is the Kronecker delta. 
conditions on the end-faces. 

(1.3) is selfadjoint, 

PI 

s Pn&dP=8* 
PI 

The constants A,, B, 

(1.3) 

so that the eigenfunctions satisfy 

are found by satisfying the boundary 

Some of the first numerical values of y, were quoted in /2/ for a homogeneous continuous 
and hollow cylinder, whence it follows that the exponential solutions have the nature of a 
boundary effect, localized on the end-faces, as is proved by St. Venant's principle. It will 
be shown below, by taking the example of a stratified cylinder, that this principle may be 
violated, because the individual eigenvalues yi may be quite small. 
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2. Let the radially inhomogeneous cylinder consist of alternating hard and soft layers, 
numbering n = 2r- 1. We shall assume that the inner and outer layers are hard. Each hard 
layer is given the index j = 1, 2, . . .( r, and each soft layer the index i = 1,2, . . ., r - 1 
(numbered from the centre). For simplicity we assume that all the hard and all the soft layers 
have the same elastic properties. The moduli of rigidity G, = G,,; Gi = G,. Let rl~ be the 
outer radius, and rOk the inner radius, of the k-th layer; in dimensionless coordinates 
they are plk and pOk respectively. 

we introduce the parameter p = G,/G, and examine the spectral problem (1.3) as p-+0. 

Theorem. The spectrum n(p) of problem (1.3) is a denumerable real set and can be 
written as 

A (P) = A_ (P) U A+“’ (PI U A+(*) (P) (2.1) 

1) L(P) consists of the double eigenvalue yO = 0 and of Z(r - 1) eigenvalues of the 

type 

y# = P""rlr + 0 V'9 

where $ are non-zero eigenvalues of the homogeneous Jacobian algebraic system (Cisthe Jacobi 
matrix) 

Cx - q=Bx = 0 12.2) 
x = (X,, x,, . . .* Xr)T, B = diag II b,, II 

Cl1 - Cl1 0 o... 0 0 

C= 
- Cl1 Cl1 + %a -cm 0 * * * 0 0 
. . . . . . . . . . . . . . . . . . . . . . 

0 0 0 0 . . . - c,, c,,. 

P:j - P$ 
b,,=-, cjj = 

z&%, j+l 

Gj+l - 4 

2) A+(‘) (p) consists of r sets of eigenvalues of the type 

12.3) 

where Ym is the root of the equation 

(2.4) 

3) A+(‘) (P) consists of r - 1 sets of eigenvalues of the type 

Yil = YlfO + 0 (P) 

where Yrlo is the root of the equation 
,&C') = I) 

(2.5) 

(2.6) 
Here, 

J$= Ja bok) Y~hk) - JB hk) Yah’l’ok) 

and f,, Y, are Bessel functions of the first and second kind. 
Since they are laborious, we shall only indicate the general scheme of the proofs of 

these results. 
In our present case, the cylinder is piecewise-homogeneous in the radial direction, so 

that the spectral problem (1.3) reduces to a problem of conjugation, which in turn reduces to 
an algebraic system with a matrix whose elements depend analytically on the spectral parameter 
y and linearly on the parameter p. 

The above results are obtained by applying the perturbation theory of linear operators 
/3/ to the algebraic system mentioned. It is important to analyse the limit problem. Here, 
at p=o, we have two limiting cases: 1) G,-+O, and the modulus of Gh is finite, 2) the 
modulus of G, is finite, and Gh-tm. 

Corresponding to the first case, we have a system of unconnected cylinders (hard layers), 
whose cylindrical surfaces are free from stress. The spectrum of the limiting problem is 
obviously the union of the sets of eigenvalues of the spectral problems that correspond to the 
individual cylinders. Denote these sets of A,(O). Each such set consists of the double eigen- 
value pjo = 0 and a denumerable set of values Yjro, which are the first terms in (2.3) of 
the analytic expansions with respect to the parameter p. For small p#O the numbers YlO 
generate A_@). 

Corresponding to the second limiting case we have a system of r--l unconnected 
cylinders on whose cylindrical surfaces the displacements are zero. Here, the spectrum of 
the limiting problem is again the union of r-l sets of eigenvalues. Each such set At(O) 
consists of the roots yso of Eq.(2.6). 

It follows from the theorem that the elementary solutions corresponding to A_(p) with 
small p are weakly damped on moving away from the end-faces, and can give a substantial 
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correction to St. Venant's solution. We shall call the set of these solutionstheweakboundary 
effect. The elementary solutions corresponding to n+(l) and A+(') with small p,arerapidly 
(strongly) damped on moving away from the end-faces. We shall call the set of these the 
"strong boundary effect". 

Let us give the expressions for the eigenfunctions Q corresponding to h.(p), which 
describe the displacement distribution over the radius. We have (et is a normalizing factor) 

4 = Cf 1% (P) + 0 @)I. (2.7) 

%I =-%I% Duo = (Pii - P%r.x (2.31 

Ix*+l.tP%(p- P%/P)- Xtt&@- f$*/P)l 

3. A simple mechanical interpretation can be given to St. Venant's solution together 
with the weak boundary effect. 

In our radially inhomogeneous cylinder with alternating hard and soft layers, we shall 
assume that the cross-section E = const of a hard layer can only rotate about the cylinder 
axis without plane displacement. The displacements of points of the corss-section will then 
obviously have the form 

% = gJ (8P (3.9) 
We assume that the displacements in a soft layer in any section E = con& as fully 

defined by the displacements of the adjacent hard layers, i.e., in accordance with (3.1) and 
our method of numbering, we have 

ui hi* E) = g&t1 t&hf; ui (POi, E) F gi tE)Pol 

Under this hypothesis, we can write the displacements in the soft layer as 

ai = (R - PW Igi+& (P - PI&/P) - g&i (P - PZ/P)l (3.21 

In accordance with (3.1) and (3.2), the stress-strain state in each hard and soft layer 
is as follows: 

The remaining components of the stress and strain tensors are zero. 
To obtain the boundary value problem suitable for our model of the stress-strain state, 

we use the Lagrange variational principle 

@I-&4=0 (3.4 
where 8A is the variation of the elementary work of the external forces, and 6n is the 
variation of the strain energy. By (3.3)) we have 

To find &A, we assume e.g., that the following boundary conditions are given on the end- 
faces: 

w (PI 0) = 0, %e (P, 1) = r(P) (3.6) 

Regarding f&J as independent variations (&gJ = 0 and E = 0), we obtain from the 
variational Eq.(3.4), using (3.3) and (3.6), a system of differential equations and boundary 
conditions which can be conveniently written in vector form (the matrices C and B are the 
same as in (2.2)): 

4g+pcg=o 
g (0) = 0, Bg' (I) = M 

g = (&In &I . * *1 cr,F, M = W,, Mm . . ., W 
*If 

M,= 2nrr' 5 rl(.'dp 
POJ 

(3.7) 

(3.31 
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If the solution of Eq.(3.7) is sought as 

g= xeuz, y = p'$, X=(X,,X,,...,X,)T 

we arrive at problem (2.21. 
Denote by xI = (X,1, Xzt, . . ., X,JT the eigenvectors corresponding to the eigenvalue 

hf = 9? of problem (2.2) (t=O, 1,. . ., r - 1). Since the problem is selfadjoint, they can be 
subjected to the condition 

(Bxt,x,)= i: b x x =I& j=l 3J ft fir (3.9) 

It can be shown directly that he = 0 is an eigenvalue, and the corresponding eigenvector 
is 

xg=(.&,rx~,...,x,,)~, X,=(ib )-” 
,=I 1’ 

(3.10) 

The general solution of the vector equation can be written as 

where A,, B,, At, Bt are arbitrary constants. 
If the displacement field corresponding to the vector go is constructed, we obtain on 

the basis of (3.11, (3.2) and (3.111: 

ni = --G (A, + B&P 
i.e., this particular solution is exactly equivalent to the St. Venant's solution. The stress- 
strain state corresponding to the non-zero eigenvalue Q is the first approximation with 
respect to p of the weak boundary effect. The displacement distribution over the radius, 
corresponding to Y1 =+ 0, is given by relations (2.8), which are in complete agreement with 
our hypotheses (3.1), (3.2). 

We now find the constants A*, Be, At, Bt of the boundary conditions (3.8). Substituting 
(3.11) into (3.8) and using the orthogonality condition (3.9), we obtain 

4. Consider as an example a three-layer cylinder. Nere, 

rlr'= ~11 (Ma,, -I- b&n), Xo = (b,, + b,) -'I* 

Xi1 = (bdbl,)“‘Xo, X, = -(b~Jb~)“%o 

For the cylinder with parameters pot= O,p,,= 0.5,~~" O&p,,=l, we have ~7 7.62. Hence, 
if p=i(f-*, then A= 0.762, and if p- 10-*, then A- 0.241. According to /2/, for a con- 
tinuous cylinder we have Yx= 5.136. 

1. 

2. 
3. 
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